نجوم موج گرانشی به بررسی برخی از سؤالات بزرگ فیزیک کمک می‌کند: چگونه سیاه‌چاله‌ها شکل می‌گیرند؟ آیا فرضیه نسبیت توضیح درستی از گرانش است؟ این سؤالات را شاهکاری به‌نام لایگو پاسخ می‌دهد.


لایگو (به‌انگلیسی: LIGO) یا رصدخانه‌ی تداخل‌سنج لیزری امواج [Only registered and activated users can see links. ] (Laser Interferometer Gravitational-Wave Observatory) ابزار و آزمایشگاهی نجومی است که آزمایش‌های فیزیک در مقیاس وسیع در آنجا انجام می‌شود. همچنین، برای تشخیص امواج گرانشی کیهانی و ایجاد مشاهدات موج گرانشی از آن بهره‌برداری می‌شود.
لایگو متشکل از دو تداخل‌سنج (Interferometers) است که به فاصله‌ای مشخص در دو نقطه از ایالات متحده‌ی آمریکا قرار گرفته‌اند: یکی در هانفوردِ واشنگتن و دیگری در لیوینگستونِ لوییزیانا. این دو برای تشخیص و شناسایی امواج گرانشی هماهنگ هستند. لایگو مجموعه امکانات ملی برای تحقیقات درباره‌ی موج گرانشی است که فرصت‌های گسترده‌ای برای جامعه‌ی علمی برای مشارکت در توسعه و مشاهده و تجزیه‌وتحلیل داده‌ها فراهم می‌کند.
ابتکار و ایده‌ی خلق لایگو به بنیاد ملی علوم (NSF) تعلق داشت و آن را مؤسسه‌ی فناوری کالیفرنیا (Caltech) و مؤسسه‌ی فناوری ماساچوست (MIT) طراحی کرده‌ و ساخته‌اند. آن‌ها از سال ۲۰۰۲ تا سال ۲۰۱۰ اطلاعات را جمع‌آوری کردند؛ اما هیچ‌ نوع امواج گرانشی را شناسایی نکردند.
مقدمه

در طول تاریخ، انسان به‌طور جدی به اشکال مختلف نور برای کشف و نحوه‌ی تکامل جهان توجه کرده است. امروزه، در لبه‌ی مرز جدیدی در نجوم قرار داریم: نجوم موج گرانشی. امواج گرانشی اطلاعاتی درباره‌ی حرکت اجسام در جهان در خود نگه می‌دارند. امواج گرانشی اجازه می‌دهند تا بیشتر از قبل به گذشته و تاریخ جهان دست پیدا کنیم. ازآنجایی‌که امواج گرانشی در سایر نقاط جهان جذب یا منعکس نمی‌شوند، قادر خواهیم بود آن‌ها را در شکل‌هایی ببینیم که در آن ایجاد شده‌اند. علاوه‌براین، انسان به‌طور مؤثر قادر خواهد بود موانع بین زمین و منبع موج گرانشی را ازبین ببرد. مهم‌تر از همه، امواج گرانشی توانایی ناشناخته را دارند. هربار انسان‌ «چشم‌های» جدیدی رو به جهان باز کرده، چیز غیرمنتظره‌ای کشف کرده‌ که انقلابی به‌پا کرده است.


شروع آشکارسازی پیشرفته لایگو در سال ۲۰۰۸ و با پشتیبانی بنیاد ملی علوم (NSF) بود. بااین‌حال، با کمک‌های مهم شورای امکانات علمی و فنی بریتانیا و انجمن مکس پلانک آلمان و شورای پژوهشی استرالیا (آشکارسازهای بهبودیافته) در سال ۲۰۱۵ شروع به‌کار کرد. تشخیص امواج گرانشی را همکاری علمی لایگو و ویرگو (Virgo) (تداخل‌سنج واقع در پیزای ایتالیا) با مشارکت بین‌المللی دانشمندان چندین دانشگاه و مؤسسه‌ی تحقیقاتی در سال ۲۰۱۶ گزارش کردند. دانشمندان حاضر در این پروژه ۱۰۰۰ دانشمند در سراسر جهان و ۴۴۰هزار کاربر فعال ([Only registered and activated users can see links. ]Home@ – پروژه‌ای داوطلبانه) را شامل می‌شدند. همه‌ی این‌ها را LSC سازمان‌دهی می‌کند و کار آن‌ها تجزیه‌وتحلیل داده در زمینه‌ی نجوم موج گرانشی است. یکی از دستاوردهای این کاربران کشف ۵۵ پالساررادیویی تا سال ۲۰۱۶ است. پالسار ستاره‌ای نوترونی یا کوتوله سفید است که پرتو تابش الکترومغناطیسی را منتشر می‌کند.
لایگو بزرگ‌ترین و بلندپروازانه‌ترین پروژه‌ای است که NSF منابع مالی آن را تأمین می‌کند. در سال ۲۰۱۷، [Only registered and activated users can see links. ] برای مشارکت در لایگو و مشاهده‌ی امواج گرانشی اهدا شد.
در مارس۲۰۱۸، لایگو شش مأموریت امواج گرانشی را انجام داده که اولین آن‌ها پنج جفت سیاه‌چاله بودند. ششمین رویداد شناسایی‌شده در ۱۷اوت‌۲۰۱۷، اولین تشخیص برخورد دو ستاره‌ی نوترونی بود که هم‌زمان سیگنال‌های نوری را تولید کرد که به‌وسیله‌ی تلسکوپ‌های معمولی تشخیص‌دادنی بودند. تشخیص و رصد امواج گرانشی درواقع اثبات و ادامه‌ی بخشی از نظریه نسبیت آلبرت انیشتین است.
لایگو چیست؟

لایگو بزرگ‌ترین رصدکننده موج گرانشی جهان و شگفتی و شاهکار مهندسی است. لایگو با دو تلسکوپ بزرگ لیزری از خواص فیزیکی نور و خودِ فضا برای شناسایی و درک مبانی امواج گرانشی استفاده می‌کند. ‌‌لایگو و سایر آشکارسازهای آن برخلاف هر رصدخانه‌ی دیگر روی زمین است. از کسی بخواهید رصدخانه‌ای را برای شما به‌تصویر بکشد. احتمالا چیزی شبیه این عکس خواهد بود: یک گنبد سفید درخشان روی کوهی که تلسکوپی بالای آن قرار گرفته است.
لایگو بیش از رصدخانه‌ای ساده است. گرچه مأموریت آن تشخیص امواج گرانشی از برخی از فرایندهای خشن و پرانرژی جهان است، داده‌های جمع‌آوری‌شده ممکن است اثرهای گسترده‌ای در بسیاری از زمینه‌های فیزیک مانند گرانش، نسبیت، اخترفیزیک، کیهان‌شناسی، فیزیک ذرات و فیزیک هسته‌ای بگذارد. درکنار همه‌ی این‌ها لایگو به‌طور جداگانه سبب توسعه‌ی هریک از اجزای کاربردی در نجوم و رصد و فناوری‌های آن‌ها شده است. به‌عنوان رصدخانه‌ای موج گرانشی، لایگو هیچ شباهتی به رصدخانه‌های سنّتی ندارد. می‌توانید تصویر هوایی رصدخانه‌ی موج گرانشی لایگو را ابتدای مقاله مشاهده کنید.
موج‌های گرانشی؛ مفهوم و نحوه‌ی ایجاد آن‌ها

بسیاری از مردم با داستان سیبِ نیوتن آشنا هستند. نیوتن درحالی‌که روزی در زیر درختی نشسته بود، متوجه افتادن سیب روی زمین می‌شود. همچنین، متوجه این موضوع می‌شود که ماه در آسمان است؛ به‌همین‌دلیل فکر می‌کند نیرویی باعث سقوط سیب شده است. این نیرو گرانش است. توده‌ها نیروی گرانشی را احساس می‌کنند؛ زیرا هر توده‌ای در جهان میدان گرانشی خود را دارد که به گرانش تمام توده‌های دیگر در جهان می‌افزاید. با‌توجه‌به نظریه‌ی گرانش نیوتن، وقتی موقعیت جرم تغییر می‌کند یا موقعیتی را تغییر می‌دهد، تمام میدان‌های گرانشی در سراسر جهان، بلافاصله تغییر می‌یابند و نیروهای گرانشی حاصل آن‌ها فورا تغییر می کنند.

نظریه‌ی نسبیت‌ عام عمومی انیشتین، پذیرفته‌شده‌ترین و پذیرفتنی‌ترین توصیف گرانش ادعا می‌کند هیچ اطلاعاتی نمی‌تواند سریع‌تر از سرعت نور حرکت کند؛ ازجمله اطلاعاتی درباره‌ی موقعیت جرم در جهان که ازطریق میدان گرانشی ارتباط برقرار می‌کنند. نسبیت عام می‌گوید تغییر در میدان گرانشی با سرعت نور از جهان عبور می‌کند. دقیقا این تغییرات در میدان گرانشی است که امواج گرانشی را به‌وجود می‌آورند.
در فیزیک، موج گرانشی موجی است که آن را میدان گرانشی تولید می‌کند. وجود این نوع امواج را آلبرت اینشتین در سال ۱۹۱۶ ازطریق نظریه‌ی نسبیت عام به‌طور نظری پیش‌بینی کرد و صد سال بعد و در سال ۲۰۱۶، به‌کمک تأسیسات لایگو به‌طور تجربی مشاهده شد. باتوجه‌به اهمیت امواج گرانشی در سال ۲۰۱۷ سه دانشمند، یعنی راینرویس و بری سی. بریش و کیپ اس. تورن به‌طورمشترک جایزه‌ی نوبل فیزیک ۲۰۱۷ را به‌خاطر تلاش‌هایشان در زمینه‌ی آشکارساز لایگو و مشاهده‌ی امواج گرانشی دریافت کردند.


در ویدئو بالا می‌توانید لحظه‌ی برخورد دو جرم در فضا و ایجاد موج گرانشی را مشاهده کنید.
موج گرانشی به‌طور نظری انرژی تابش گرانشی را منتقل می‌کند. منابع موج‌های گرانشی قابل‌آشکارسازی شامل سیستم‌های ستاره‌ی دوتایی است که یکی از اعضای آن کوتوله سفید و ستاره‌ی نوترونی یا سیاه‌چاله است. وجود موج گرانشی یکی از عوارض ناوردایی‌لورنتز (برای درک بیشتر کوتیشن پایین را بخوانید) در نسبیت عام است. همچنین، این امر باعث می‌شود سرعت برهم‌کنش‌های گرانشی محدود باشد. بااین‌حال، در فیزیک کلاسیک این‌گونه نیست. ردیابی امواج گرانشی درواقع دو نظریه‌ی مهم فیزیک و کیهان‌شناسی را ثابت کرده‌ است: یکی فرضیه‌ی نسبیت عام انیشتین که حدود صد سال پیش (سال ۱۹۱۶) و دیگری نظریه‌ی [Only registered and activated users can see links. ] که در دههٔ هشتاد میلادی مطرح شد. امواج‌ گرانشی چین‌های ریزی در تاروپود هستی هستند؛ مانند امواجی که اقیانوس را درمی‌نوردند. این امواج گرانشی «ازلی» انرژی را در کیهان جابه‌جا می‌کنند. این امواج از ۳۸۰هزار سال پس از مهبانگ در پس‌زمینه‌ی کیهان در ترنم بوده‌اند؛ اما در طول این زمان طولانی، از پلاسمایی بسیار داغ به امواجی بسیار سرد (سه درجه‌ی بالای صفر مطلق، یعنی حدود منفی ۲۷۰ درجه‌ی سانتی‌گراد) و ضعیف شده‌اند. این امواج کاملا همگون نیستند و مثل نور در هم‌کنشی با الکترون‌ها و اتم‌ها پلاریزه (قطبی) می‌شوند.
ناوردایی‌ لورنتز: در دانش فیزیک، نام تقارن لورنتز (لورنتس) از هندریک لورنتز برگرفته شده و عبارت است از ویژگی طبیعت که می‌گوید نتایج آزمایش‌ها مستقل از جهت‌گیری و سرعت آزمایشگاه در میان فضا هستند. لورنتز در تلاش برای بهبود تبدیلات گالیله تبدیل جدیدی یافت که با آن معادلات ماکسول در سیستم‌های مختصات مختلفی تغییر نمی‌کرد که نسبت به‌هم حرکت دارند و بدین‌ترتیب اساس نسبیت خاص بنا نهاده شد. این تبدیل اکنون تبدیلات لورنتس نامیده می‌شود. یکی از مفاهیم مرتبط‌با تقارن لورنتز، هموردایی لورنتز است که بنابر نظریه نسبیت خاص از ویژگی‌های اصلی فضازمان است. هموردایی لورنتز دو معنی متمایز، اما مرتبط دارد:
۱. کمیت فیزیکی را درصورتی هموردایی لورنتز می‌خوانند که در نمایش گروه لورنتز تبدیل شود. بنابر نظریه‌ی نمایش گروه لورنتز، این کمیت‌ها از نرده‌ای‌ها، چارتانسور‌ها، چاربردار‌ها و اسپینور‌ها ساخته می‌شوند. به‌طور خاص، کمیت نرده‌ای (مانند بازه‌ی فضازمان) در تبدیلات لورنتز بدون تغییر می‌ماند و به آن ناوردایی لورنتز گفته می‌شود؛ یعنی در نمایشی بدیهی تبدیل می‌شوند.
۲. معادله را درصورتی هموردایی لورنتز می‌گویند که بتوان آن را برحسب کمیت‌های هموردایی لورنتز نوشت. ویژگی مهم این معادلات آن است که اگر در چهارچوب لَخت برقرار باشند، در هر چهارچوب لخت دیگری نیز برقرار خواهند بود. این ویژگی از این امر پیروی می‌کند که اگر تمام مؤلفه‌های یکتانسور در چهارچوبی ناپدید شوند، در هر چهارچوب دیگری نیز ناپدید خواهند شد. بنابر اصل نسبیت، این ویژگی ضروری است؛ یعنی همه‌ی قوانین غیرگرانشی باید برای آزمایش‌های یکسانی نتایج یکسانی پیش‌بینی کنند که در رویداد فضازمان در دو چهارچوب مرجع لَخت مختلف رخ می‌دهند.
موج گرانشی به زبان ساده

در فیزیک مدرن، زمان بُعد چهارم جهان محسوب می‌شود. انیشتین دریافت نمی‌توان دو مفهوم فضا و زمان را ازهم جدا کرد و هندسه‌ی جهان چهاربُعدی است (سه بُعد فضا و یک بُعد زمان). او در تئوری نسبیت این هندسه را [Only registered and activated users can see links. ] نامید. گرانش یا جاذبه در این تئوری انحنایی در فضازمان است. این انحنا را جرم ایجاد می‌کند. هرچه جرم جسمی بیشتر باشد، انحنای بزرگ‌تری در فضازمان ایجاد می‌کند. این انحنا درواقع موقعیت جسم را مشخص می‌کند. وقتی جسمی حرکت می‌کند، انحنای ایجادشده در فضازمان هم حرکت می‌کند.
برای اینکه این موضوع روشن شود، صفحه‌ی بسیار نرم لاستیکی منعطفی را درنظر بگیرید. اگر توپ بسکتبال روی آن قرار بدهید، جرم زیاد آن باعث فرورفتگی در صفحه‌ی لاستیکی خواهد شد. حال کمی این توپ را بغلتانید تا از نقطه‌ی A به نقطه‌ی B برود. انحنای موجود در صفحه‌ی لاستیکی نیز همراه با توپ جابه‌جا خواهد شد و از A به B خواهد رفت. واضح است که نقطه‌ی A دیگر انحنا نخواهد داشت و بالا خواهد آمد. این حرکت از پایین به بالای صفحه باعث ایجاد نوعی موج می‌شود. در ساختار فضازمان، این موج موج گرانشی نامیده می‌شود.


رویدادهای عظیم کیهانی مثل انفجار ابرنواخترها که انرژی‌های عظیم با سرعت نور حرکت می‌کنند، موج گرانشی تولید می‌کنند. وقتی آب را در حوض به‌هم بزنید، موج‌های کوچکی ایجاد می‌شود. این موج‌ها را می‌توان به‌مثابه موج گرانشی درنظرگرفت. برای روشن‌ترشدن موضوع انواع امواج گرانشی را می‌توانید در زیر بخوانید:
امواج گرانشی مداوم: این امواج را سیستم‌هایی تولید می‌کند که فرکانس نسبتا ثابت و مشخص دارند. نمونه‌هایی از این‌ها ستاره‌های باینری (دوتایی) یا سیستم‌های‌ سیاه‌چاله‌ای هستند که به یکدیگر متصل می‌شوند یا تک‌ستاره‌ای که با کوه بزرگ یا نوعی بی‌نظمی به‌سرعت در اطراف محورش می‌چرخد. انتظار می‌رود این منابع امواج گرانشی ضعیف، اما نسبتا طولانی داشته باشند؛ زیرا آن‌ها در طول دوره‌های طولانی تکامل یافته‌اند. صدایی که این امواج گرانشی تولید می‌کنند، یک تُنِ مستمر است؛ زیرا فرکانس موج گرانشی آن‌ها تقریبا ثابت است.


امواج گرانشی الهام‌بخش: این امواج در طول مرحله‌ی پایانی سیستم‌های دودویی تولید می‌شوند که دو جرم به‌هم متصل می‌شوند. این سیستم‌ها معمولا می‌تواند دو ستاره‌ی نوترونی یا دو سیاه‌چاله یا یک ستاره‌ی نوترونی یا یک سیاه‌چاله باشد که مدار آن‌ها به نقطه‌ای نزدیک می‌شود که دو توده در‌حال‌جمع‌شدن هستند. همان‌طورکه دو توده در اطراف یکدیگر چرخان می‌شوند، فاصله‌ی اثرهایشان به‌هم کاهش می‌یابد و سرعتشان افزایش می‌یابد. این باعث می‌شود فرکانس امواج گرانشی تا زمان هماهنگ‌شدن افزایش یابد. صدای تولید‌شده‌ی این امواج گرانشی افزایشی است. ابتدا افزایش سرعت و سپس افزایش صدا تا وقتی‌که هماهنگ شوند.

امواج گرانشی انفجاری یا پیاپی: امواج گرانشی انفجاری از منابع ناشناخته یا غیرمنتظره‌ی کوتاه‌مدت تولید می‌شوند. آن‌ها امواج گرانشی هستند که در شب به‌سر می‌برند. هربار انسان‌ها با مجموعه‌ای جدید از چشم‌ها یا سیستم‌های رصدخانه‌ای به جهان نگاه می‌کند (مثلا با استفاده از تلسکوپ برای دیدن نور مرئی یا امواج رادیویی یا آشکارسازهای اشعه‌ی گاما برای دیدن اشعه‌های گاما)، پدیده‌های غیرمنتظره و انقلابی مشاهده می‌کنند. درک اینکه چه چیزی در امواج گرانشی انفجاری وجود دارد، می‌تواند غیرمنتظره باشد. البته فرضیه‌هایی نیز وجود دارند که می‌گویند منشأ این امواج می‌تواند برخی از سیستم‌هایی مانند انفجار ابرنواختر یا اشعه‌ی گاما باشند. بااین‌حال، جزئیات دقیق این سیستم‌ها برای پیش‌بینی و تجزیه‌وتحلیل شکل این امواج بسیار کم است. انتظار می‌رود این امواج گرانشی صداهایی چون Pops یا ترکیدن و Crackles یا شکستگی تولید کنند. گفتن این موضوع دشوار است؛ چراکه منشأ و مبدأ آن‌ها هنوز مشخص نیست.

امواج گرانشی اتفاقی: امواج گرانشی اتفاقی اثرهایی به‌جامانده از تکامل اولیه‌ی جهان است. این امواج گرانشی مانند بسیاری از رویدادهای تصادفی و مستقل ایجادکننده‌ی پس‌زمینه‌ی موج گرانشی کیهانی، مانند میکروموج پس‌زمینه‌ی کیهانی (CMB) به‌وجود می‌آیند که احتمالا نور پایینی از انفجار بزرگ است. پیش‌بینی می‌شود انفجار بزرگ نامزد و منشأ اصلی برای تولید بسیاری از فرایندهای تصادفی در تولید امواج گرانشی تصادفی و CMB باشد. بنابراین، ممکن است اطلاعات مربوط به مبدأ و تاریخ جهان را با خود حمل کند. اگر این امواج گرانشی واقعا در انفجار بزرگ متصاعد شده باشند، این امواج به‌اندازه‌ی گسترش جهان گسترش می‌یابند و می‌توانند درباره‌ی ابتدای کیهان به ما بگویند. صدایی که این امواج گرانشی تولید می‌کنند، مداوم و بسیار شبیه به استاتیک است.

فناوری لایگو

هریک از اجزای تشکیل‌دهنده‌ی سیستم لایگو به‌خودی‌خود تکنیک مهندسی است و بدون همکاری یکپارچه، لایگو به‌عنوان ابزاری چندمنظوره هرگز نمی‌تواند به اهداف علمی‌اش دست یابد. باید بدانید اگر هرکدام از اجزای لایگو کوچک‌ترین نقص و خطایی داشته باشند، کل مأموریت شکست می‌خورد و همه‌ی اجزای سیستم آسیب خواهند دید. درادامه، هریک از سیستم‌های اصلی و بحرانی لایگو را به‌طور کلی مرور می‌کنیم.
تداخل‌سنج‌ها (Interferometers)

تداخل‌سنج‌ها (Interferometers) به‌طور گسترده‌ای در علم و صنعت برای اندازه‌گیری جابه‌جایی‌های کوچک و تغییرات شاخص شکست و بی‌نظمی‌های سطحی استفاده می‌شود. در اواخر قرن نوزدهم، آلبرت مایکلسون تداخل‌سنج را اختراع کرد. در اغلب تداخل‌سنج‌ها، نور از منبعی منفرد به دو پرتو هدایت می‌شود که مسیرهای مختلف نوری را می‌گذرانند. سپس، دوباره برای ایجاد تداخل ترکیب می شوند؛ اما در برخی موارد، دو منبع غیرواقعی نیز می توانند درگیر شوند. در علوم تحلیلی، تداخل‌سنج‌ها برای اندازه‌گیری طول و شکل اجزای نوری با دقت نانومتری استفاده می‌شوند. آن‌ها بالاترین و دقیق‌ترین ابزار اندازه‌گیری موجود را دارند. تداخل‌سنجی نجومی شامل دو یا چند تلسکوپ جداگانه است که سیگنال‌های آن‌ها را ترکیب می‌کند.
ازآنجاکه تداخل‌سنج‌ها کاربرد بسیار وسیعی دارند، به ​​شکل و اندازه‌های مختلف ساخته می‌شوند. آن‌ها برای اندازه‌گیری همه‌چیز از کوچک‌ترین تغییرات روی سطح ارگانیزم میکروسکوپی تا ساختار گسترده‌ی عظیم گاز و گردوغبار در جهان دور و در‌حال‌حاضر، برای تشخیص امواج گرانشی استفاده می‌شود. با وجود طرح‌ها و روش‌های مختلفی که در آن‌ها استفاده می‌شود، همه‌ی تداخل‌سنج‌ها در یک موضوع مشترک هستند: آن‌ها پرتوهای نور را برای ایجاد الگوی تداخل سوق می‌دهند. پیکربندی اولیه‌ی تداخل‌سنج لیزری مایکلسون در شکل زیر نشان داده شده است. این دستگاه شامل لیزر، شکافنده‌ی پرتو، مجموعه‌ای از آینه‌ها و عکس‌گیرنده یا دستگاه عکاسی (نقطه‌‌ی سیاه) است که الگوی تداخل را ثبت می‌کند.

تداخل‌سنج‌ها در اواخر قرن نوزدهم محبوب شدند و چندین نوع متفاوت از آن‌ها وجود دارد که هرکدام به‌طور کلی برمبنای اصولی ساخته شده‌اند که در این مقاله آورده شده‌ است و به نام دانشمندانی نام‌گذاری شده‌اند که آن را کامل کرده‌اند. شش نوع متداول از تداخل‌سنج‌ها عبارت‌اند از: مايکلسون، فابی پرت، فيزا، ماچ‌زندهر، سايناک و تداخل‌سنج تيممن‌گرین.
تداخل‌سنج مایکلسون (به‌نام آلبرت مایکلسون، ۱۸۵۳ تا ۱۹۳۱) احتمالا چون به‌عنوان بخشی از آزمایش مشهور مایکلسون‌مورلی شناخته شده که در سال ۱۸۸۱ ایفای نقش کرد. این زمانی بود که مایکلسون و همکارش، ادوارد مورلی (۱۸۳۸ تا ۱۹۲۳)، از وجود مایع نامرئی مرموز به‌نام اتر یا عنصر آسمانی خبر دادند که فیزیک‌دانان اعتقاد داشتند فضای خالی فضا را پر کرده است. آزمایش مایکلسون‌مورلی، یکی از اقدامات مهم پیش‌ روی تئوری نسبیت آلبرت اینشتین بود.
تداخل‌سنجی نجومی با استفاده از روش سنتز دیافراگم مشاهده‌ها را با وضوح زیاد به‌دست می‌آورد. با این روش، سیگنال‌ها را از خوشه‌ای از تلسکوپ‌های نسبتا کوچک به‌جای تلسکوپ یکپارچه بسیار گران‌قیمت به‌دست می‌آورد.
لایگو در‌حال‌حاضر شامل دو تداخل‌سنج است که دو سیلندر یا لوله‌ Lشکل به طول ۴ کیلومتر (۲.۵ مایل) دارند. این سیلندرها به‌عنوان آنتن عمل می کنند تا موج‌های گرانشی را شناسایی کنند.
تداخل‌سنج لایگو بزرگ‌ترین و حساس‌ترین تداخل‌سنج جهان هستند. این امر در جست‌وجو برای امواج گرانشی بسیار مهم است؛ زیراکه بازوهای تداخل‌سنجی طول بیشتری دارد و لیزر دورتر و دستگاه حساس‌تر می‌شود. این تلاش برای تغییر انداز‌ه‌گیری حتی هزار بار کوچک‌تر از یک پروتون است، بدین معنی که لایگو باید درمقابل هر ابزار علمی ساخته شده حساس‌تر باشد، بنابراین، هرچه طولانی تر باشد، بهتر است. در ویدئو زیر روش کار تداخل‌سنج را می‌توانید ببینید:


مفهوم تداخل‌سنجی به زبان ساده

برای درک بهتر اینکه تداخل‌سنج‌ها چگونه کار می‌کنند، کسب اطلاعات بیشتر درباره‌ی الگوی دخالت می‌تواند کمک کند. درنظر بگیرید سنگی را به حوضچه یا استخر پرتاب کرده‌اید. وقتی واقعه را دیدید، یعنی درباره‌ی مداخلات اطلاعات کسب کرده‌اید. درواقع، سنگ‌ها با برخورد به آب امواج متمرکز ایجاد می‌کنند که از نقطه‌ی ورود سنگ متصاعد می‌شوند. در جایی که دو یا چند امواج متمرکز به‌هم برخورد کنند و متقاطع شوند، شکل آن‌ها تغییر می‌کند و امواج جدیدی ایجاد می‌شود که گاهی اوقات بزرگ‌تر و گاهی کوچک‌تر هستند یا از‌بین می‌روند. شکل جدیدی که از امواج آن دو موج جدا و ازهم تقسیم می‌شوند، الگوی دخالت است.

درست همین اتفاق می‌افتد که امواج نور مانند امواج آب رفتار می‌کنند. وقتی دو پرتو نور لیزر ادغام می‌شوند، بین آن‌ها الگوی تداخل ایجاد می‌شود که به‌نحوه‌ی هماهنگ‌شدن امواج نور هنگام ترکیب آن‌ها بستگی دارد. وقتی دو پرتو نور باهم برخورد می‌کنند، باهم همپوشانی دارند، دخالت می‌کنند و به‌اصطلاح درهم تداخل ایجاد می‌کنند و تفاوت فزاینده‌ی بین آن‌ها الگوی مناطق روشن و تاریک (به‌عبارت دیگر مجموعه‌ای از حاشیه‌های تداخل) ایجاد می‌کند. نواحی روشن مکان‌هایی هستند که دو پرتو آن‌ها باهم ترکیب و روشن‌تر می‌شوند (سازنده). نواحی تاریک مکان‌هایی هستند که پرتوها از یکدیگر جدا شده‌اند (مخرب). الگوی دقیق تداخل به راه‌های مختلف یا فاصله‌ی اضافی بستگی دارد که یکی از پرتوها به آن سفر کرده است. با بررسی و اندازه‌گیری حاشیه‌ها، می‌توانید این را با دقت زیادی محاسبه کنید. این به شما اندازه‌گیری دقیقی از هر چیزی می‌دهد که می‌خواهید به آن برسید.
جداسازی لرزه‌ای

بزرگ‌ترین قوت لایگو بزرگ‌ترین ضعف آن نیز محسوب می‌شود. لایگو برای اندازه‌گیری کوچک‌ترین حرکات ناشی از ضعیف‌ترین تحرکات موج گرانشی طراحی شده و به تمام ارتعاشات نزدیک (مانند حرکت کامیون‌ها و خودروها در جاده‌های نزدیک) و دور (زلزله در جاهای دیگر جهان) بسیار حساس است. ازاین‌رو بدون استفاده از اقدامات ویژه، هر تعداد از ارتعاشات زمین و کوچک‌ترین حرکتی می‌تواند آینه‌های اصلی لایگو را حرکت دهد. دانشمندان لایگو آن‌ها را توده‌های آزمایشی نامیده‌اند. برای رفع این مشکل لایگو از جداسازی حداکثر ارتعاش محیط‌زیستی استفاده می‌کند. برای این منظور، لایگو با استفاده از چندین روش و دسته‌بندی لرزه‌ها به دو دسته‌ی فعال و غیرفعال آن‌ها را ازبین می‌برد. شایان ذکر است به سیستم حذف تحرکات زیست‌محیطی و غیرموجی جداسازی‌ لرزه‌ای می‌گویند.

عکسی از سیستم جداسازی لرزه‌ای داخلی (ISI)

دمیدن فعال
اولین خط دفاع لایگو دربرابر لرزش‌های ناخواسته، سیستم مهار فعال است. سیستم جداسازی لرزه‌ای داخلی (ISI) شامل دستگاه‌هایی است که جنبش‌های زمینی را حس می‌کنند و سپس به‌صورت عمدی حرکات متقابل را برای ازبین‌بردن آن‌ها انجام می‌دهند و ابزار را بدون حرکت نگه می‌دارند.
بدیهی است محیط محلی همیشه باعث یک یا چند شکل از ارتعاش یا حرکت می‌شود. سیستم ISI LIGO شامل حسگرهای طراحی‌شده برای احساس فرکانس‌های مختلف ناشی از ارتعاشات گوناگون محیطی است. این حسگرها درکنار یکدیگر کار می‌کنند و سیگنال‌هایشان را به کامپیوتر می‌فرستند تا اثرهای همه‌ی این حرکات را ترکیب و سپس، با تولید شبکه‌ای ضدحرکت تمام ارتعاشات را لغو کند. کارکرد این سیستم بسیار شبیه به هدفون‌هایی است که به Noise-Canceling یا سیستم حذف سروصدای اطراف مجهز هستند.
دمیدن غیرفعال
سیستم دمیدن غیرفعال لایگو از پاندولی چهارمرحله‌ای به‌نام کواد (Quad) ساخته شده است. در کواد، توده‌های آزمایشی لایگو (آینه‌های آن) در انتهای چهار پاندول تعلیق می‌شوند. طرف حلقه‌ی اصلی با پرتو لیزر مواجه است؛ درحالی‌که طرف توده‌ی واکنش به حذف توده‌ی آزمایشی از سروصدایی کمک می‌کند که به منابع فضایی مربوط نیست. این پیکربندی هر حرکتی را جذب می‌کند که به‌طور کامل آن را سیستم فعال (ISI) لغو نمی‌کند. وزن خالص اجزای سیستم تعلیق (وزن هر آینه چهل کیلوگرم است) به‌لطف قانون اینرسی از حرکت آینه جلوگیری می‌کند.
همکاری مشترک سیستم لرزه‌ای دمیدن غیرفعال و فعال به آینه ها و لیزر لایگو اطمینان می‌بخشد که از هر نوع صدای خارجی و لرزه‌های فیزیکی ممکن پاک شوند.

سیستم پاندول چهارمرحله‌ای کواد (Quad)

خلأ
لایگو یکی از مکند‌های بزرگ و پاک‌ پایدار در زمین محسوب می‌شود که ازنظر حجمی، تنها از هادرون بزرگ Collider در سوئیس پیشی گرفته است. فشار جوّی در داخل لوله‌های خلأ لایگو به یک‌تریلیون فشار هوای سطح دریا می‌رسد. لایگو به دو دلیل به این دو خلأ نیاز دارد:
۱. هوا یا حتی فقط چند مولکول هوا می‌تواند با ایجاد سروصدا باعث تغییرات کوچک در فاصله‌ی بین آینه‌ها شود و حتی مانند ماسکی ممکن است آن‌ها را بپوشاند. وجود مولکول‌های هوا در داخل خلأ ممکن است باعث جنبش براونی (حرکت تصادفی ناگهانی ذرات میکروسکوپی) شود. مولکول‌های هوا وقتی به سطح آینه می‌رسند، آن‌ها را می‌توانند حرکت دهند و موجب انعکاس امواج‌گرانشی شوند. همچنین، وجود هوا در مسیر نور لیزر باعث تغییر مسیر آن نیز می‌شود. حتی اگر فقط چند مولکول هوا به پرتو نور لیزر برخورد کنند، فاصله‌ی آشکاری بین آینه‌ها می‌توانند ایجاد کنند و حتی آن‌ها را تحت‌تأثیر قرار دهند و باردیگر جلوه‌های ظریف موج گرانشی گذرا را پنهان کنند.